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The development of diffuse optical tomography (DOT) instrumentation for neuroimaging of humans is
challenging due to the large size and the geometry of the head and the desire to distinguish signals at
different depths. One approach to this problem is to use dense imaging arrays that incorporate measure-
ments at different source–detector distances. We previously developed a high-density DOT system that is
able to obtain retinotopic measurements in agreement with functional magnetic resonance imaging and
positron emission tomography. Further extension of high-density DOT neuroimaging necessitates a thor-
ough study of the measurement and imaging sensitivity that incorporates the complex geometry of the
head—including the head curvature and layered tissue structure. We present numerical simulations
using a finite elementmodel of the adult head to study the sensitivity of themeasured signal as a function
of the imaging array and data sampling strategy. Specifically, we quantify the imaging sensitivity avail-
able within the brain (including depths beyond superficial cortical gyri) as a function of increasing the
maximum source–detector separation included in the data. Through the use of depth related sensitivity
analysis, it is shown that for a rectangular grid [with 1:3 cm first nearest neighbor (NN) spacing], second
NNmeasurements are sufficient to record absorption changes along the surface of the brain’s cortical gyri
(brain tissue depth <5mm). The use of fourth and fifth NN measurements would permit imaging down
into the cortical sulci (brain tissue depth >15mm). © 2009 Optical Society of America

OCIS codes: 110.6955, 100.6950, 170.2655, 170.3660.

1. Introduction

Noninvasive neuroimaging has led to a revolution in
contemporary neuroscience, allowing the functional
mapping of the human brain on a scale that was pre-
viously accessible only through invasive studies of
animals [1]. There is wide-scale and promising po-
tential for clinical neuroimaging to provide longitu-

dinal diagnostic and prognostic information about
brain function. However, while the majority of re-
search studies in healthy adults are conducted with
functional magnetic resonance imaging (fMRI), its
high cost, fixed scanner locations, and inability to
comprehensively assess altered brain metabolism
limit translation to a bedside clinical tool. Diffuse op-
tical tomography (DOT) is a novel and emerging non-
invasive neuroimaging methodology that is uniquely
suited to this setting, as it is a mobile system utiliz-
ing a small, flexible imaging cap [2]. Additionally,
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DOT can measure absolute changes in oxygenated
(ΔHbO2), deoxygenated (ΔHbR), and total hemoglo-
bin (ΔHbT), providing more comprehensive images
of the brain’s hemodynamics [3].
DOT methods are an advancement beyond pre-

vious optical neuroimaging techniques performed
in topographic mode, often referred to as near infra-
red spectroscopy (NIRS) or diffuse optical imaging
(DOI). With NIRS the reconstructed image is synthe-
sized frommeasurements at a single source–detector
pair separation and without overlapping measure-
ments [4–6]. This topographic method limits the
lateral spatial resolution and precludes depth discri-
mination, resulting in a mixture of signals from the
brain and superficial tissues. DOT encapsulates a
variety of technological improvements to resolution
and depth sectioning. Time-resolved DOT systems
can extract the time-of-flight of photons to obtain
depth information [7–9]. However, system complex-
ity has hampered the capability of these systems to
provide practical neuroimaging. A promising alter-
native is the use of high-density arrays of optodes
(near infrared sources and detectors). Theoretically,
even with measurements solely of light intensity, the
overlapping measurements should improve lateral
spatial resolution while different source–detector
combinations sample different depths within the tis-
sue. In a recent study, we presented a new high-
density DOT system with high contrast-to-noise
and the ability to image brain responses in adult
humans with greater detail than was previously ac-
cessible to optical imaging [10]. These advances in
image quality were made possible through increased
dynamic range, allowing the inclusion of light from
multiple source–detector separations in the image
reconstructions.
As this demonstration of the promise of DOT was

confined to a small lateral region of the brain and
only to the superficial cortex, a relatively simple
model of light propagation for image reconstruction
was sufficient. The head was assumed to be a hemi-
sphere (8 cm radius) and consisted of only two layers
(scalp/skull and brain). Many other optical studies
use still simpler imaging strategies including semi-
infinite models to estimate the sensitivity of different
source–detector pair measurements [9,11]. However,
as future DOT systems will cover larger regions of
the head, taking into account the true contour of the
head and perhaps internal layers will be crucial to
accurate localization of brain activity [12]. In addi-
tion, continuous sampling of the cortical gray matter
will require sensitivity and depth localization of
changes deep into the sulcal folds.
In this work, we present numerical simulations

using a finite element model (FEM) of the adult head
to study the image quality as a function of the ima-
ging array and data sampling strategy for high-
density DOT systems. We simulate imaging for
five hypothetical systems with different maximum
source–detector distances ranging from 1.3 to
5:5 cm. In order to support the larger attenuation

of light measured at these larger distances, the
systems that have larger source–detector distances
are assumed to have developments enabling higher
sensitivity (lower noise floors). For each of these sys-
tems, we are interested in quantifying the sensitivity
of both measured signals and reconstructed images
to absorption changes within the brain (including
depths beyond superficial cortical gyri). The analysis
of the imaging depths of these hypothetical systems
can then serve as a road map for guiding future DOT
instrumentation development.

2. Methods

A. Hypothetical Instruments and Noise Models

In this specific part of the study we model five differ-
ent DOT systems using the array of 24 sources and
28 detectors from Zeff et al. [10]. The difference be-
tween the systems is that they have different noise
floors that allow us, within the same geometry, to
select different numbers of measurements to be in-
cluded in the reconstruction. First through fifth
nearest neighbors (NN) source–detector separations
were defined [Fig. 1(a)] based on source–detector
separation. From the optode array, we selected differ-
ent measurement combinations by increasing the
maximum separation allowed (from first to fifth
nearest neighbor: 1 NN–5 NN, respectively). So, for

Fig. 1. (Color online) Hypothetical DOT imaging systems and
measurement configurations. (a) Definitions of first through fifth
nearest neighbor measurements within the context of our imaging
pad. (b) Measurement designs and noise floors necessary for 2NN
and 5NN DOT systems. Red dots are simulated light level mea-
surements in the absence of noise. Altering the instrument noise
floor changes the amount of measurements that can be included
with an SNR > 100.
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example, the 4 NN measurement combination in-
cludes light measurements taken from first, second,
third, and fourth nearest neighbor separations. In
doing so, we are effectively modeling five different
DOT systems with different measurement noise
floors (Fig. 1(b)). In each case, we model the signal-
to-noise ratio (SNR) as a threshold, where included
measurements are assumed to have light intensity
with an SNR greater than 100, and those excluded
(i.e., too distant) are given an SNR of 0 and excluded.
This approach is based on our previous empirical

measurements of SNR. With the system reported in
Zeff et al. [10], our measurements have typical SNRs
of 801, 218, 198, 81, and 66 for first through fifth NN
pairs, respectively. Thus our SNR ceiling of 100 is ac-
tually a conservative estimate of our current system
performance (used as a 1 NN to 3 NN system). We
expect future systems to be able to deliver this per-
formance at the fourth and fifth NN pairs. Further-
more, with filtering and block averaging, as is found
with typical event-related activation studies, we can
reduce our measured in vivo noise to 0.12%, 0.15%,
0.41%, and 1.42% for first through fourth NN pairs,
respectively.

B. Forward Light Modeling

The numerical model used is a three-dimensional
(3D) FEM representation of the adult head, shown
in Fig. 2(a). The underlying geometry was created
through the combination of manual segmentation
of an MRI data set and other anatomical reference
models using a commercial surface modeling tool.
The meshing was carried out using I-DEAS (www
.ugs.com), which is fully described elsewhere [13].
The mesh contains 88,492 nodes corresponding to
502,526 linear tetrahedral elements. Three different
regions were considered: muscle/skin, bone, and
brain, as shown in Figs. 2(b)–2(d). We used the phy-
siological and optical parameters for different re-
gions as determined by Torricelli et al. [14] (Table 1).
The optode array was placed over the occipital cortex
of the anatomic model (Fig. 3).
Using NIRFAST [15], light propagation within the

head model was simulated for all five combinations.
The details of the number of measurements and the
maximum distance of source–detector pairs for each
of these detection strategies are shown in Table 2.
The Jacobian (also known as the sensitivity matrix)
was calculated assuming continuous wave intensity
data and considering only absorption related
changes at 849nm. The sensitivity due to each
source–detector pair was calculated using the adjoint
theorem [16].

C. Inversion Methods

The goal of image reconstruction (the inverse pro-
blem) is the recovery of the optical property μa at
each FEM node within the domain using measure-
ments from the head surface. Using the generalized
Moore–Penrose inverse model, the linearized image
reconstruction can be stated as [17]

JTðJJT þ λLÞ−1∂Φ ¼ ∂μa; ð1Þ

where δμa is the update for the optical properties, λ is
the regularization factor (set in this work at 10−5

times the maximum of the diagonal of matrix JJT),
δϕ is the difference between the measured and mod-
eled data, and the spatial variant regularization L is
set as

L ¼ 1

diagðJJT þ βÞ1=2 ; ð2Þ

Fig. 2. (Color online) Three dimensional (3D) model of the adult
brain. (a) View of the FEM mesh. (b)–(d) Cross-sectional maps of
absorption at 849nm.

Table 1. Physiological Parameters Used for Each Region of the 3D Model [14] and the Absorption and Reduced Scattering Coefficients at 849nm

HbT (μM) SO2ð%Þ H2Oð%Þ Scatter Size Scatter Amplitude Absorption (mm−1) Reduced Scatter (mm−1)

Muscle 70 80 50 0.14 2.82 0.018 0.222
Bone 49 80 15 1.4 1.47 0.012 1.78
Brain 76 71 78 0.54 0.76 0.021 0.6115
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where β is set at 10−2 times the maximum of the di-
agonal of matrix JJT . Both λ and β values were
chosen to match the values used typically in our pre-
vious human [10] and animal [18] DOT studies.

D. Measurement Depth Sensitivity Analysis

In order to calculate the total sensitivity for all mea-
surements for a given detection strategy (1 NN–5
NN), individual source–detector sensitivities were
summed and normalized, such that the total sensi-
tivity becomes

Jtotal
j ¼

PNM
i¼1 Ji;j

max
�
abs

�PNM
i¼1 Ji;j

�� ; ð3Þ

where Jtotal
j is the total normalized calculated sensi-

tivity at node j of the model, and Ji;j is the sensitivity
at node j, due to source–detector pair i, for a total
number of measurements NM.

E. Imaging Depth Sensitivity Analysis: Flat Field

In order to provide a comprehensive view of the
depth sensitivity after image reconstruction, we per-
formed a flat field imaging test. A test image, δμa,
was constructed with a uniform small change
(0.01%) in absorption at each position throughout
the imaging volume. Simulated data, δϕ, was calcu-
lated using

∂Φ ¼ J∂μ: ð4Þ

These simulated data were then used, together with
Eq. (1), to reconstruct flat field images for each mea-
surement strategy.

F. Imaging Depth Sensitivity Analysis: Focal Activations

In order to further analyze the depth sensitivity, we
evaluated test images of focal activity at different
depths. Simulated reference data were generated
using the unperturbed model shown in Fig. 2 and
Table 1. Then, we modeled a brain activation at vary-
ing depths using a small (0:5 cm radius) hemody-
namic change consisting of a 3:8 μM rise in total
hemoglobin and 3.76% change in oxygen saturation
(final anomaly values of HbT ¼ 79:8 μM, SO2 ¼
74:76% against background brain values as stated
in Table 1). Differential intensity data were calcu-
lated based on changes at 849nm. Consistent with
our aforementioned current in vivo performance,
0.15% random noise was added to both the reference
(unperturbed) and anomaly (perturbed) data. The
noise added was calculated as a set of randomly dis-
tributed Gaussian noise, at each data point and data
set. Assuming no knowledge of the background opti-
cal properties of the volume being imaged, the noise-
added unperturbed data were used to calculate a
global fit for background (unperturbed) absorption
using methods discussed elsewhere [19]. Assuming
a background reduced scattering coefficient of
1:0mm−1, the calculated global value for the absorp-
tion coefficient using this method was found to be
8:7 × 10−3 mm−1. Using a Jacobian based on these
global optical properties, images of baseline (tempor-
al change) activity were reconstructed using the dif-
ference data (perturbed—unperturbed) as defined
in Eq. (1).

3. Results

Using the heterogeneous 3D model of the adult head,
the sensitivity matrix for different nearest neighbor
source–detector combinations was calculated for in-
tensity measurements and absorption-only changes
at 849nm (Fig. 4, where only the back portion of
the axial view at midplane of the imaging grid is
shown). As is evident from the normalized total sen-
sitivity plot, the 1 NN measurement combination
provides information only from superficial layers of
the muscle and bone regions. For the 2 NN, 3 NN,
and 4 NN measurement combinations, although the
majority of the total sensitivity is still seen at the
muscle and bone regions, the 1% sensitivity contour
line shows limited depth sensitivity from the brain.
The available depth of the measurement sensitivity
increases further when using the 5 NNmeasurement
combinations, with the 10% sensitivity contour well
within the brain region and the 1% sensitivity deep
within the brain.

Figure 5 shows a cross section of the flat-field im-
age test along the dashed line shown in Figure 4(e).
Although the total normalized sensitivity plots in
Fig. 4 show superficial preference, the depth at which
changes can be reconstructed is significantly deeper.

Fig. 3. (Color online) (a) Back view and (b) side view schematic
showing the placement of the imaging grid over the visual cortex
of the adult head model with 24 sources (red squares) and 28 de-
tectors (blue circles).

Table 2. Total Number for Measurements for 24 Sources and 28
Detectors Using Either 1st, 2nd 3rd, 4th, or 5th Nearest Neighbor

Combinations, Together with the Maximum Distance of These Source–
Detector Pairs

1 NN 2 NN 3 NN 4 NN 5 NN

Number of measurements
included

84 212 260 348 396

Maximum source/detector
separation (mm)

13 30 40 48 54
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Specifically, the normalized flat-field sensitivity is
greater than 50% at 10mm deep within the
brain when using either 4 or 5 NN.
In order to highlight the differences in increased

sensitivity and depth recovery between the different
data sampling strategies, images of temporal
changes due to small focal hemodynamic changes
were reconstructed (Fig. 6). The 1 NN measurement
strategy is unable to reconstruct activations at any
depth within the brain. Increasing the number of
measurements used in the reconstruction from 2

NN to 5 NN increases the distance into the brain
at which activations can be reconstructed. The 2
NN strategy is sufficient to image brain activity near
the surface of the brain (corresponding to cortical
gyri), while the 5 NN strategy can image to at least
20mm deep within the brain, which allows measure-
ment of activity within sulcal folds.

4. Discussion

In this paper, we presented a detailed anatomic mod-
el and evaluated the possible imaging sensitivities of
different high-density DOT arrays. Not surprisingly,
the addition of measurements with greater source–
detector separations into the imaging problem in-
creases the sensitivity as a function of depth in both
the forward and inverse problems [20]. Here, we see
that the depth sensitivity within the brain clearly
increases between the 2 NN and 5 NN arrays
(Figs. 4–6). In contrast to generic “rules of thumb”
or simpler anatomically inaccurate semi-infinite
models [18], this study uses realistic anatomy and
provides more quantitative detail. For example,
the total normalized sensitivity at the surface of the
brain increases by a factor of 2 when extending from
2NN to 5NN data sampling. Alternatively, the depth
of the 1% sensitivity line increases from 12mm to
17mmwhen extending from 2 NN to 5 NN data sam-
pling. However, these estimates of measurement
sensitivity neglect the capability of tomography to lo-
calize contrast and account for varying sensitivity
profiles.

A better estimate of image sensitivity versus depth
is obtained by evaluating images reconstructed from
simulated data derived from test images. For com-
parison a very simple “rule of thumb” estimate is
that measurements are sensitive to a depth equal
to 1=3 the source–detector separation. Such an ap-
proach would predict a gain in imaging depth of

Fig. 4. (Color online) Total normalized forward model sensitivity
shown as contour lines on the back portion of the axial view of the
3D adult head model for each nearest neighbor (NN) set. The
shades in each image represent the optical absorption properties
at 849nm, as shown in Fig. 2. Each contour line represents 10% of
the total sensitivity with the dashed black line at 10% and dashed
white line at 1% sensitivity.

Fig. 5. (Color online) Cross section (along the region depicted by
the dashed line in Fig. 4(e)) of the flat-field image test for each
nearest neighbor as a function of distance from surface of the head.
The solid vertical line represents the surface of the brain.

Fig. 6. (Color online) Reconstructed baseline tomographic images
of hemodynamic activation at different depths within the brain,
using 1 NN through 5 NNmeasurement strategies. Images shown
are absorption changes measured at 849nm, with each pane
scaled to its maximum value. Each row corresponds to an activa-
tion depth, and each column is a different measurement combina-
tion. Only the back portion of the axial view of the 3D adult head
model is shown, with solid cyan lines representing the skull out-
line. The activation corresponds to a 3:8 μM rise in total hemoglo-
bin and 3.76% change in oxygen saturation.
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8mm when increasing the maximum source–
detector separation from 2 NN (30mm separation)
to 5 NN (54mm separation) data sampling. Our
flat-field imaging test shows an extension of
13mm for the 50% sensitivity point (12mm for 2
NN and 25mm for 5 NN). Thus the full reconstruc-
tion estimate provides an increased depth compared
to the rule of thumb. This increased depth is likely
because the reconstruction includes the curvature
of the head and the specifics of the high-density ima-
ging array (more measurements are included with
the 5 NN versus 2 NN array).
In order to cross validate the flat-field imaging

test, images of small baseline hemodynamic changes
were reconstructed using noise added simulated data
and a model of “calculated bulk” optical properties.
From the reconstructed images, it is clearly seen that
although the 2 NN data sampling can recover a mod-
est change at 5mm deep within the brain, the ability
to recover changes deteriorates dramatically for dee-
per regions. However, using 5 NN, changes at up to
20mm deep within the brain are successfully recov-
ered, despite some small reconstruction artifacts.
It has been shown previously that the addition of

extra measurements and variation in measurement
geometry can influence the amount of information
that can be obtained from the volume under investi-
gation [20,21]. However, most of such studies to
date have only considered nonspecific, simple, and
homogeneous models and have not included the
depth-dependent or image recovery dependence of
the problem. Although the use of a specific model,
as in this study, does not account for variation of
the tissue thickness or optical properties, it does de-
monstrate that the use of additional nearest neigh-
bor measurements provides substantial depth
related information in optical brain imaging. The
variation of such parameters additionally becomes
less influential, when the aim is differential imaging,
whereby relative changes, rather than absolute va-
lues, are of interest.
There is some question in the optical neuroima-

ging community about whether one must model
the clear cerebrospinal fluid (CSF) layer within the
head. Much of this controversy stems from earlier
publications that seemed to indicate that the
diffusion approximation failed at reconstructing
anomalies below a nonscattering layer [22]. However,
subsequent papers suggested three reasons why this
conclusion was incomplete. First, Ripoll et al. found
that, if the surface of the nonscattering layer is rough
(as that of the CSF is), then the effect of the layer is
minimal [23]. Second, Pei et al. were able to recon-
struct DOT images of objects below even a smooth
nonscattering layer. They attribute their success to
the use of differential measurements [24]. Third,
Custo et al. showed that neglecting CSF can actually
underestimate your system’s brain sensitivity [25],
making our model conservative. Since our study is
conducted with differential measurements in a

geometry with a rough, thin nonscattering layer, we
expect the effects of the CSF to be minimal.

The presented results are also applicable to other
complementary optical imaging methods and techni-
ques, such as diffuse correlation optical tomography,
whereby the aims are to measure and reconstruct
information regarding blood flow within a region of
interest [26,27].

5. Conclusions

High-density DOT has shown promise as a method to
create three-dimensional reconstructions of brain he-
modynamics while maintaining portability, low cost,
and low system complexity. Future increases in the
dynamic range of such systems will allow the use
of greater source–detector separations, useful for
probing deeper within the brain. While sensitivity
to deep brain structures such as the basal ganglia
and hippocampus will most likely not be possible,
a DOT system that would have sensitivity through-
out the sulcal folds of the cortical convexity would be
of immense use for both neuroscience research and
clinical practice. Simplistic forward models have suf-
ficed for localized imaging domains and studies of ac-
tivations on the gyri. However, increased lateral
coverage and depth penetration demand more accu-
rate light modeling to quantify the imaging sensitiv-
ity and improve image reconstruction.

The results presented herein give an indication of
the future of in vivoDOT reconstructions and provide
a roadmap for how to obtain the desired sensitivity
throughout the cortical folds. Our modeling predicts
a dramatic increase in depth sensitivity attainable
using the fifth nearest neighbor measurements. For-
ward model sensitivities, inverse problem updates,
and simulated image reconstructions show that such
a system would be able to image at depths greater
than 20mm within the brain. Such sensitivity would
allow the measurement activations at the bottom of
sulcal folds. These results motivate future technolo-
gical developments and will serve as a basis for ac-
curate in vivo image reconstructions.

This work was supported in part by National Insti-
tutes of Health grants K25-NS4339 and R21-EB7924
as well as the Engineering and Physical Sciences
Research Council, UK.
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